
PLEASE ANSWER ALL QUESTIONS.
PLEASE EXPLAIN YOUR ANSWERS.

1. Consider the following game G.

Player 1

Player 2
L C R

U 6, 3 3, 0 0, 1
M 5, 11 1, 7 10, 10
D 2, 5 2, 7 0, 0

(a) Solve the game by iterated elimination of strictly dominated strategies. If you get a
unique solution, indicate this. If your solution is not unique, write up the reduced
game where you have eliminated the strictly dominated strategies.
Solution: For player 2, R is strictly dominated by L. After eliminating R, M and
D are strictly dominated by U for player 1. After eliminating M and D, C is strictly
dominated by L. The unique solution is (U,L).

(b) Find all the pure and mixed-strategy Nash Equilibria.
Solution: By the results on the connection between IESDS and NE, a unique IESDS
solution must also be the unique NE. Therefore, (U,L) is the unique NE.

(c) What are the Subgame-perfect Nash Equilibria of the game G(2), i.e. the game G
repeated twice?
Solution: Since there is only stage-game NE, the unique SPNE of G(2) is to play
(U,L) in all subgames.

(d) Now consider the game G(∞, δ), i.e. the game G repeated infinitely many times, with
discount factor δ ∈ (0, 1). Define average payoffs as

(1− δ)
∞∑

t=1
δtπit,

where πit is the stage-t payoff of player i = 1, 2. What does the folk theorem tell us
about the set of possible equilibrium payoffs in this game as δ grows large? Show
that there is a subgame-perfect equilibrium that achieves 10 as average payoffs for
both players.
Solution: The folk theorem (in the version seen in class), tells us that if x is a feasible
payoff (i.e. x is a convex combinations of payoffs in G) and x1 ≥ 6 and x2 ≥ 3 (strict
inequalities are ok as well) then if δ is sufficiently close to 1, there exists a SPNE that
achieves x as the average payoff.
Existence of the SPNE. Strategies: Play (M,R) as long as there has been no deviation.
Following a deviation, play (U,L) forever. Average payoffs on the equilibrium path
are (1− δ)

∑∞
t=1 δ

t(10) = 10, whereas after a deviation they are 6 for player 1 and 3
for player 2. Clearly, player 1 has no incentive to deviate, since his highest deviation
payoff is 0 and 10 ≥ (1− δ)(0) + δ6. Player 2’s best deviation payoff is 11, so he will
not deviate if 10 ≥ (1− δ)(11) + δ(3), which translates into δ ≥ 1

8 . Thus, for δ higher
than 1/8, the equilibrium can be sustained. Off the equilibrium path, no player has
an incentive to deviate, since a stage-game NE will be played in every round.

2. Country A produces oil of a value of $10 a year. However, in order to get the oil to the
market, country A will have to build a pipeline through either country B or country C.
Neither country B nor C are oil-producers, but they have to give permission to A in order
for the pipeline to be built, and they can demand a payment from A for this. Constructing
a pipeline is otherwise costless.
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(a) Suppose first that all the oil can be transported by a single pipeline. Let us think of
this as a cohesive coalitional game with transferable payoffs. Why can we think of
this game as cohesive? Why can we think of it as having transferable payoffs?
Solution: The game is cohesive because everything that can be achieved by a coali-
tion of one or two countries can also be achieved by all three together. The game has
transferable payoffs because the countries can make monetary transfers.

(b) Write up the value of the different coalitions and find the core of the coalitional game
described in (a). Give an intuition for the outcome.
Solution: The values of the different coalitions are

v(i) = 0 for all i = A,B,C

v(Aj) = 10 for all j = B,C

v(BC) = 0
v(ABC) = 10.

In the core,
∑

i∈I vi ≥ v(I) for all coalitions I and feasibility vA + vB + vC ≤ 10.
We thus have vi ≥ 0 for all i, vA + vB ≥ 10 and vA + vC ≥ 10, and from feasibility
vA + vB + vC = 10. Therefore, the core is {(10, 0, 0)}. Intuition: B and C can offer
exactly the same to A, but there is no gain to making an agreement with both of
them. Therefore, A has all the ‘bargaining power’.

(c) Now, suppose that (i) B can transport all the oil, but C can at most transport half
of it, and (ii) A can transport all the oil via an alternative route, but at a cost of
$5. Write up the value of the different coalitions and find the core of this coalitional
game. How does the outcome differ from the outcome you found in (b)? Give an
intuition.
Solution: The values of the different coalitions are

v(i) = 0 for all i = B,C

v(A) = 5
v(AB) = 10
v(AC) = 5
v(BC) = 0

v(ABC) = 10.

In the core,
∑

i∈I vi ≥ v(I) for all coalitions I and feasibility vA + vB + vC ≤ 10.
We thus have vB, vC ≥ 0, vA ≥ 5, vA + vB ≥ 10, vA + vC ≥ 5, and from feasibility
vA + vB + vC = 10. This yields vA ≥ 5, vB ≤ 5 and vC ≤ 0. Therefore, the core
is {(vA, vB, vC) : vA ∈ [5, 10], vB = 10 − vA, vC = 0}. Intuition: Now, B can always
offer something better than C, who therefore gets nothing. On the other hand, A
has an ‘outside option’, and is therefore assured at least 5. The remaining surplus is
bargained between A and B.

3. In this question, we consider two games in which player 1 takes an action and also chooses
whether that action is observable to player 2. These two games are described by Figure 1
and Figure 2, respectively.
The only difference between the games is the order in which player 1 moves: in the first
game (Figure 1), player 1 first chooses whether the action is observable, and then takes
the action. In the second game (Figure 2), player 1 first takes the action, and then chooses
whether the action will be observed. Notice from the payoffs in the game trees that player
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1 must invest 1 in order to make his action observable (i.e. his payoff is lower by 1 whenever
he makes the action observable).

(a) Consider the game in Figure 1. Here, player 1 has to decide whether to make his
action observable before he takes the action. How many proper subgames are there
in this game (not counting the game itself)? What are the strategy sets of each
player?
Solution: There are 4 subgames not counting the game itself (one after N , one after
I, one after I and L′, one after I and R′). S1 = {I,N} × {L,R} × {L′, R′} and
S1 = {l, r} × {l′, r′} × {l′′, r′′}.

(b) Find all the pure-strategy Subgame-perfect Nash Equilibria of the game in Fig-
ure 1.
Solution: Start in the subgame after N . Here, the unique NE is (R, r). In the
subgame after I and L′ the NE is to play l′, whereas in the subgame after I and R′

the NE is to play r′′. Finally, in the subgame after I, the only NE which is also an
NE in the two following subgames, is (L′, l′r′′). Thus, in his first information set,
player 1 is choosing between a payoff of 2 if he plays N , and a payoff of 4 if he plays
I. It follows that the unique SPNE is (IRL′, rl′r′′).

(c) Consider the equilibrium (equilibria) you found in question (b). If player 1 chooses to
reveal his action (plays I), give an intuition for why this is the case. If player chooses
not to reveal his action (plays N), give an intuition for why this is the case. Make
the connection with the idea of commitment.
Solution: Player 1 chooses to make his action observable, since otherwise he cannot
commit to not playing R which is a dominant strategy for him. By making his action
observable, he effectively allows player 2 to ‘punish’ him for playing R by playing r.
This then makes L the optimal action for player 1 after I. Thus, making his action
observable in some sense gives him ‘commitment power’.

(d) Now consider the game in Figure 2. Here, player 1 has to decide whether to make
his action observable after he takes the action. Argue that Subgame-perfect Nash
Equilibrium is not a good solution concept to solve this game. Show that there is a
Perfect Bayesian Equilibrium in which the players get payoffs (4, 5). Remember to
specify full strategies and the beliefs that support the equilibrium.
Solution: SPNE is not a good solution concept in this case, since player 2’s non-
singleton information set cannot be analyzed separately. That is, this information
sets is not part of any proper subgame. This means it is not possible to first solve for
Player 2’s action in this subgame, and then move backwards up the game tree.
PBE: The equilibrium payoffs will be achieved if player 1 plays L and then I, and
player 2 then plays l. It is easy to check that player 2’s best responses in his singleton
information sets are l and r′′. In the non-singleton information set, player 2’s best
response is r′ if p ≤ 3/8, and l′ if p ≥ 3/8.
Now turn to player 1. He will choose I after L if player 2 plays r′ in his non-singleton
information set. Thus, we require p ≤ 3/8. Since we are looking for an equilibrium
where player 1 chooses I and then L, this belief is off the equilibrium path, and
can be freely specified (R4 does not apply here). If player 2 plays r′, this will make
player 1 choose N ′ after R. Finally, in his first move player 1 is therefore choosing
between payoff 2 (from R) and payoff 4 (from L), and will choose L. Thus, the PBE
is (LIN ′, lr′r′′; p ≤ 3/8).
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